Home » nuclear power plants

Category Archives: nuclear power plants

Giant Curtain in Energy Revolution: China Builds World’s First Thorium Reactor

Energy is one of the most important criteria in the world and we can say that it is the most important requirement of every function. Without energy, there can be no production, and it is not even possible to consume the produced materials and commodities. When we look at the old World Wars and even the Gulf War, we see that they were completely aimed at controlling energy deposits (oil). However, now that oil has decreased in the world, renewable energy and nuclear energy have come to the fore. The biggest problem in Nuclear Energy is that the Fission Reaction leaves radioactive residues and carries many dangers, and Uranium is found in limited quantities in the world and is the monopoly of certain states such as the USA. China, as the second largest economy in the world, is perhaps the most intensive producer in the world in terms of production, and energy is very important for the existence of the Chinese Economy. In this sense, China is working very intensively on energy studies and has made very serious progress by making the world’s first thorium reactor at this level and has opened a very important giant curtain in the energy revolution.

 

Why is Thorium Reactor Important?

Chinese Thorium ReactorThorium reactors are a type of nuclear reactor proposed as an alternative to traditional uranium-based nuclear reactors in energy production. These reactors use the naturally abundant thorium element, which is less radioactive than uranium. Thorium cannot be used directly as a nuclear fuel; however, it can be converted to uranium-233 by neutron bombardment in a nuclear reactor environment. The uranium-233 isotope produced in this process can then be used for energy production. One of the biggest advantages of thorium reactors is that they produce much less radioactive waste in the nuclear fuel cycle and that this waste is easier to manage in the long term. In addition, the abundance of thorium around the world provides a great advantage for such reactors in terms of energy supply security. China and Turkey have the world’s largest Thorium reserves.

China’s First Thorium Reactor: A Turning Point

China is making major investments in nuclear energy to meet its energy needs and reduce its dependence on fossil fuels. As part of these efforts, China commissioned the world’s first thorium-based liquid salt reactor in 2021. This experimental reactor, built in Wuwei, Gansu Province, is designed to evaluate the potential of thorium in energy production and to become a world leader in thorium-based nuclear power generation. China’s thorium reactor has a thermal power generation capacity of approximately 2 megawatts and is initially planned to be used for testing technology and safety systems rather than for electricity generation. The reactor was successfully operated and its performance results were seen in 2024. China has plans to build larger and commercial thorium reactors by 2030. This will contribute to China’s energy independence and mark a turning point in the global transition to thorium-based nuclear energy.

China’s thorium reactor project could have a significant impact on energy policies and nuclear technology development strategies worldwide. Conventional nuclear power generation faces challenges such as security risks, radioactive waste management issues, and nuclear proliferation threats. Thorium reactors have the potential to solve many of these problems. First, the use of thorium results in less radioactive waste being produced and in a shorter half-life. This greatly simplifies radioactive waste management and reduces long-term storage requirements. Additionally, nuclear accidents are less likely in thorium reactors because the reactor design provides automatic shutdown in the event of an emergency.

China’s leadership in this area may encourage other countries to develop thorium reactors. Especially in a world where energy consumption is rapidly increasing and the environmental impacts of fossil fuels are increasingly causing concern, thorium-based nuclear energy stands out as a clean and sustainable energy source. In addition, thorium reactors minimize the production of plutonium that can be used for nuclear weapons production, which can contribute to nuclear disarmament efforts. China’s leadership in this area can determine the direction of global energy policies and technological developments and lead to the widespread use of thorium reactors. Therefore, China’s thorium reactor project is a critical development not only for China but for the entire world. In this way, energy can be produced with fewer radioactive reactors and, more importantly, there will be no dependence on the US for uranium.

Considering that many countries like Turkey and India also have huge Thorium Reserves, it is essential for them to cooperate with China and take part in this energy revolution. In fact, India thorium based nuclear reactor research is also progressing for a similar breakthrough.

Rosatom announced today that preparatory work for the construction of four new reactors has commenced

Rosenergoatom said the corresponding decision to construct the units was signed by Rosatom Director General Alexey Likhachov following a meeting on the organisation of work on the construction of reactors in Russia for nuclear energy and the appointment of those responsible for the implementation of investment projects. It noted that the new units at Smolensk and Leningrad II are included in the general plan for the placement of electric power facilities until 2035, already approved by the Russian government. Likhachov noted that VVER-1200 and VVER-TOI reactors are being built not only in Russia, but also abroad. He said they use “the most advanced achievements and developments that meet all modern international safety requirements”.

For the new Smolensk II and Leningrad II units, Rosenergoatom will act as the technical contractor for both investment projects. Atomproekt JSC and Atomenergoproekt JSC will act as the chief designer of the Leningrad II and Smolensk II units, respectively.

By the end of this year, a project for the preparatory work will begin at the construction site for the new units 3 and 4 at Leningrad II. Temporary accommodation and an industrial base will be built at the construction site. Between 2020 and 2022, public hearings will be held on the substantiation of the licence and environmental impact assessment of the new units to obtain a construction licence.

Leningrad II will have four VVER-1200 units. Leningrad unit 1 was shut down for decommissioning on 21 December last year. Leningrad II unit 1 was connected to the grid on 9 March 2018, becoming the second VVER-1200 reactor to start up, following the launch in 2016 of Novovoronezh unit 6.

The new Smolensk II plant – featuring two VVER-TOI (typical optimised, with enhanced information) reactors with a total capacity of 2510 MWe – will be built 6 km from the existing Smolensk plant. The first VVER-TOI unit is under construction as part of the Kursk II nuclear power project. By the end of 2020, it is planned to develop and approve an action plan for the Smolensk II investment project and open financing for the implementation of measures in accordance with the plan. Smolensk II is to replace the three RBMK reactors at Smolensk I, which are expected to remain in operation until the new plant starts to come online.

Commenting on the construction of the four new units, Rosenergoatom General Director Andrei Petrov said: “The new power units will replace the units with RBMK-1000 reactors, whose service life will end in the next decade. According to preliminary estimates, the construction at two sites at once will create up to 15,000 new jobs, will provide regular tax revenues to regional and local budgets.”

Nuclear Energy Power Plants in the World

Nuclear power plants currently operate in 31 countries. Most are in Europe, North America, East Asia and South Asia. The United States is the largest producer of nuclear power, while France has the largest share of electricity generated by nuclear power. China has the fastest growing nuclear power program with 28 new reactors under construction,and a considerable number of new reactors are also being built in India, Russia and South Korea.

Of the 31 countries in which nuclear energy  power plants operate, only France, Slovakia, Ukraine, Belgium, and Hungary use them as the source for a majority of the country’s electricity supply. Other countries have significant amounts of nuclear power generation capacity. By far the largest nuclear electricity producers are the United States with 805 647 GWh of nuclear electricity in 2017, followed by France with 381 846 GWh.

Country

In operation

Under construction

Number

Electr. net output
MW

Number

Electr. net output
MW
Argentina

3

1.632

1

25

Armenia

1

375

Belarus

2

2.218

Belgium

7

5.913

Brazil

2

1.884

1

1.245

Bulgaria

2

1.926

Canada

19

13.524

China

36

31.402

20

20.500

Czech Republic

6

3.930

Finland

4

2.752

1

1.600

France

58

63.130

1

1.630

Germany

8

10.799

Hungary

4

1.889

India

22

6.225

5

2.990

Iran

1

915

Japan

43

40.290

2

2.650

Korea, Republic

25

23.133

3

4.020

Mexico

2

1.440

Netherlands

1

482

Pakistan

4

1.005

3

2.343

Romania

2

1.300

Russian Federation

36

26.557

7

5.468

Slovakian Republic

4

1.814

2

880

Slovenia

1

688

South Africa

2

1.860

Spain

7

7.121

Sweden

10

9.651

Switzerland

5

3.333

Taiwan, China

6

5.052

2

2.600

Ukraine

15

13.107

2

1.900

United Arab Emirates

4

5.380

United Kingdom

15

8.918

USA

99

98.868

4

4.468

Total

450

391.915

60

59.917